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Abstract: As an alternative to the standard Dirichlet counterterms prescription, I in-

troduce the concept of Kounterterms as the boundary terms with explicit dependence on

the extrinsic curvature Kij that regularize the AdS gravity action. A suitable choice of

the boundary conditions — compatible with any asymptotically AdS (AAdS) spacetime —

ensures a finite action principle for all odd dimensions. Background-independent conserved

quantities are obtained as Noether charges associated to asymptotic symmetries and their

general expression appears naturally split in two parts. The first one gives the correct

mass and angular momentum for AAdS black holes and vanishes identically for globally

AdS spacetimes. Thus, the second part is a covariant formula for the vacuum energy

in AAdS spacetimes and reproduces the results obtained by the Dirichlet counterterms

method in a number of cases. It is also shown that this Kounterterms series regularizes the

Euclidean action and recovers the correct black hole thermodynamics in odd dimensions.
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1. Introduction

In the context of AdS/CFT correspondence [1], Witten sketched the program to regular-

ize the action for AdS spacetimes [2], which was carried out in detail by Hennigson and

Skenderis in ref. [3].

This procedure, known as holographic renormalization, considers a generic form of the

metric for an asymptotically AdS (AAdS) spacetime

ds2 = Gµνdxµdxν =
ℓ2

4ρ2
dρ2 +

gij (ρ, x)

ρ
dxidxj (1.1)
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where ρ is the radial coordinate of a manifold M , whose boundary is located at ρ = 0, and

ℓ is the AdS radius. This coordinates choice is suitable to describe the conformal structure

of the boundary, whose metric gij (ρ, x) accepts a regular expansion [4]

gij (ρ, x) = g(0)ij (x) + ρg(1)ij (x) + ρ2g(2)ij (x) + . . . (1.2)

where g(0)ij is a given initial value for the metric.

Solving the Einstein equations in this frame reconstructs the spacetime from the bound-

ary data, determining the coefficients g(k) as covariant functionals in the boundary metric

g(0) (that contain k derivatives of xi). Then, in order to preserve general covariance at the

boundary, it is necessary to invert the series to express all the quantities as functions of

the boundary metric hij = gij/ρ [5].

In this way, the counterterms method proposes a regularization scheme that consists

in the addition to the Dirichlet action of local functionals of the boundary metric hij , the

intrinsic curvature Rkl
ij of the boundary and covariant derivatives of the boundary Riemann

∇mRkl
ij . In D = d + 1 dimensions the regularized action reads

I = − 1

16πG

∫

M

dd+1x
√
−G

(

R̂ − 2Λ
)

− 1

8πG

∫

∂M

ddx
√
−hK +

∫

∂M

ddxBct(h,R,∇R).

(1.3)

In the above action, hatted curvatures refer to (d + 1)−dimensional ones, the cos-

mological constant is Λ = −d(d − 1)/2ℓ2 and K = Kijh
ij is the trace of the extrinsic

curvature.

The Gibbons-Hawking term ensures a well-posed variational principle for a Dirichlet

boundary condition on the metric hij [6], that is still valid in presence of the Dirichlet

counterterms series because its functional variation is expressed as δBct = (δBct/δhij)δhij .

As a consequence, a regularized stress tensor for AdS spacetimes is obtained [7, 8]

using the Brown-York quasilocal energy-momentum tensor definition [9], without reference

to any background solution.

A novel feature of this approach is the appearance — in D = 2n + 1 dimensions — of

a vacuum energy for AdS spacetime, that is clearly unobservable in background-dependent

methods. In five dimensions, the matching between this vacuum energy and the Casimir

energy induced by a precise boundary CFT (N = 4 SYM theory with gauge group SU(N))

is one of the best known examples of the AdS/CFT correspondence [7].

Despite the fact this regularization procedure provides a systematic way to construct

the Dirichlet counterterms series, in practice, the number of possible counterterms increase

drastically with the dimension. Even for a given dimension, the finiteness of the conserved

charges for a more complex solution would require a significant addition of counterterms

respect to the same problem, for instance, in Schwarzschild-AdS black hole. Moreover,

these extra terms do not seem to obey any particular pattern [10].

In recent papers [11, 12], the problem of Dirichlet counterterms in AdS gravity has

been reformulated as an initial-value problem for the extrinsic curvature. This results in

a simpler algorithm to obtain the series Bct but, however, the full series for an arbitrary

dimension is still unknown.
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Furthermore, in the counterterms method is not clear where the vacuum energy is

coming from, i.e., which boundary terms are responsible for the shifting of the zero-point

energy of AdS or whether it can be obtained from a general covariant formula for any

AAdS spacetime.

Therefore, a natural question arises: Is there another counterterms series that also

regularizes the Einstein-Hilbert action with negative cosmological constant, and whose

expression can be worked out in any dimension?

Certainly the answer to that problem implies the departure from an standard action

principle based on a Dirichlet boundary condition on the metric hij .

Such construction may at first sound too ambitious. However, we have evidence com-

ing from even-dimensional AdS gravity, where considering a boundary condition for the

spacetime curvature

R̂µν
αβ +

1

ℓ2
δ
[µν]
[αβ] = 0 (1.4)

on ∂M has been a good alternative to produce a finite action principle [13, 14]. In that

case, the gravity action is supplemented by the Euler term E2n with a coupling constant

fixed demanding this generic asymptotic condition.

In D = 2n dimensions, the Euler theorem states that the Euler term E2n is equivalent

to the boundary term B2n−1 (the n−th Chern form) up to the Euler characteristic χ2n,

a topological number for the manifold M . From a dynamic point of view, χ2n is just an

integration constant and then, the formula for the conserved charges is the same if we

supplement the Einstein-Hilbert-AdS action either with the boundary term B2n−1 or the

Euler (bulk) term E2n [15]. In that sense, the regularizing effect of the Dirichlet counterterm

series can be replaced by the Euler term in even dimensions. The clear advantage of this

procedure is that we do not need to perform any particular expansion of the metric, nor

solving the asymptotic equations in that frame to find the coefficients g(k)ij = g(k)ij(g(0)),

nor inverting the series to express all the quantities as covariant functionals of the boundary

metric hij . This procedure contrasts with the simplicity of fixing a single global factor in

E2n, given by the asymptotic condition (1.4). In other words, considering the Euler term as

a single entity, its coupling constant comes from fixing the leading order in the curvature,

because in the expansion (1.1), (1.2), the asymptotic Riemann reads

R̂kρ
ij (G) = O(ρ2), (1.5)

R̂kρ
iρ (G) = − 1

ℓ2
δk
i + O(ρ2), (1.6)

R̂kl
ij (G) = − 1

ℓ2
δ
[kl]
[ij] + ρ

(

Rkl
ij (g(0)) +

1

ℓ2

(

δk
[ig

l
(1)j] + gk

(1)[iδ
l
j]

)

)

+ O(ρ2), (1.7)

where gi
(1)j = gil

(0)g(1)lj .

In sum, what is remarkable in this approach is the fact that we have a closed expression

for the boundary term B2n−1 in all even dimensions and also, a deep connection between

the regularizing boundary terms and topological invariants.

The same approach cannot be applied to odd-dimensional AdS gravity, because there

are no topological invariants of the Euler class in D = 2n + 1, what makes gravity in even
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and odd dimensions quite different. This is not so surprising, because also in standard

holographic renormalization there appear technical differences respect the even-dimensional

case: the expansion (1.2) requires a log ρ term at order ρn to be consistent with the

equations of motion, the existence of Weyl anomaly, the appearance of a vacuum energy

for AdS space, etc.

Following a different strategy, a mechanism to regularize the AdS gravity action in odd

dimensions was proposed in [16]. A boundary condition for the extrinsic curvature Kj
i in

AAdS spaces is the key assumption that leads to a well-posed action principle for a given

boundary term B2n. This asymptotic condition was motivated by a similar construction

in Chern-Simons-AdS gravity [17].

Indeed, in the three-dimensional case, where Einstein-Hilbert-AdS gravity action is

a Chern-Simons form for the group SO(2, 2), this prescription regularizes the Euclidean

action and the Noether charges with a single boundary term that is one half the Gibbons-

Hawking term. It can be proved that a suitable expansion reduces the problem to the

Dirichlet formulation plus a topological invariant of the boundary metric [18].

At this point, as an alternative to the standard counterterms approach, we introduce

the concept of Kounterterms as the boundary terms that regularize the AdS gravity action,

that posses explicit dependence on the extrinsic curvature Kij and whose construction is

based on boundary conditions compatible with the Fefferman-Graham form of the met-

ric (1.2).

In this article, we show the general tensorial form the Kounterterms adopt in the

odd-dimensional case.

2. Kounterterms

We consider the Einstein-Hilbert action with negative cosmological constant, with the

addition of a boundary term Bd

I = − 1

16πG

∫

M

dd+1x
√
−G

(

R̂ − 2Λ
)

+ cd

∫

∂M

ddxBd (2.1)

instead of the standard Gibbons-Hawking term plus the counterterms series. Here, cd is a

coupling constant that will be determined by an appropriate variational principle.

We consider a radial foliation for the spacetime (Gaussian normal coordinates)

ds2 = N2(ρ)dρ2 + hij (ρ, x) dxidxj , (2.2)

but we do not assume any particular expansion of the boundary metric as in eq. (1.1), (1.2).

In this frame, the expression for the extrinsic curvature adopts a simple form

Kij = − 1

2N
∂ρhij. (2.3)

2.1 Kounterterms and the Euler theorem

The Kounterterms series differs from the one obtained from the Dirichlet regularization,

even in a simple case as it is D = 4, where it is given by the boundary term [15]

B3 = 2
√
−hδ

[i1i2i3]
[j1j2j3]

Kj1
i1

(

Rj2j3
i2i3

(h) − 2

3
Kj2

i2
Kj3

i3

)

, (2.4)
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with a coupling constant c3 = ℓ2/(64πG). In the above formula, Rij
kl(h) stands for the

intrinsic curvature of the boundary metric.

It is clear from the expanded form

B3 = 4
√
−h

[

−2

3
Ki

jK
j
kKk

i + K

(

Ki
jK

j
i − 1

3
K2

)

− 2

(

Ri
j −

1

2
δi
jR

)

Kj
i

]

, (2.5)

that B3 does not contain any term proportional to
√
−hK (Gibbons-Hawking term), mak-

ing evident that it is not derived from a Dirichlet action principle. Notice that the dimen-

sional continuation of (2.5) is required to define the Dirichlet problem for Einstein-Gauss-

Bonnet gravity in D ≥ 5, because it is the generalization of the Gibbons-Hawking term for

the quadratic terms in the curvature in the Gauss-Bonnet density [19, 20].

The expression (2.4) possesses the additional Lorentz symmetry in the tangent space

that becomes manifest when it is expressed in terms of the second fundamental form (SFF)

θAB = ωAB − ω̄AB , (2.6)

defined as the difference between the dynamic spin connection ωAB = ωAB
µ dxµ and a

reference one ω̄AB.

The indices of the tangent space run in the set A,B = {0, 1, ..,D − 1}. In the metric

formulation of gravity, the spin connection is determined in terms of the vielbein eA =

eA
µ dxµ (Gµν = ηABeA

µ eB
ν ) as

ωAB
µ = −eBν∇µeA

ν . (2.7)

For the radial foliation (2.2), the natural splitting for the orthonormal basis is

e1 = Ndρ, (2.8)

ea = ea
i dxi, (2.9)

where the indices set A = {1, a} and the boundary metric is hij = ηabe
a
i e

b
j .

An adequate choice of the reference connection ω̄AB, as obtained from a cobordant

product metric

ds2 = N̄2(ρ)dρ2 + h̄ij(x)dxidxj (2.10)

that matches the dynamic one only on the boundary ρ = ρ0, (h̄ij(x) = hij(ρ0, x)) leads to

a SFF on the boundary as [21 – 23, 19]

θ1a = Ka
i dxi, θab = 0, (2.11)

in terms of the extrinsic curvature Ka
i = ea

j K
j
i . We stress that the spin connection ω̄AB

is just introduced on ∂M to restore Lorentz covariance in the boundary term but it is not

related to any background-substraction procedure, where the background needs to be a

solution of the bulk field equations.

Therefore, the fully Lorentz-covariant expression for the Kounterterms B3 in terms of

the Levi-Civita tensor is1

B3 = 2εABCDθAB

(

RCD +
1

3
θC
F θFD

)

. (2.12)

1The wedge product ∧ between the differential forms is omitted throughout the paper.
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In four-dimensional manifolds without boundary, the integration of the Euler-Gauss-

Bonnet term

E4 = εABCD R̂ABR̂CD = −d4x
√
−G

(

R̂µναβ R̂µναβ − 4R̂µν R̂µν + R̂2
)

is simply proportional to the Euler characteristic χ(M4). When a boundary is introduced,

the Euler theorem states that there is a correction due to the boundary

∫

M4

εABCD R̂ABR̂CD = 2 (4π)2 χ(M4) + 2

∫

∂M4

εABCD θAB

(

RCD +
1

3
(θ2)CD

)

, (2.13)

given exactly by the expression (2.12) that is known as the second Chern form. In fact,

using the general formalism reviewed in appendix A, the boundary term can be seen as a

transgression form for the Lorentz group SO(3, 1).

In higher even-dimensional AdS gravity, the regularization of the conserved quantities

was achieved in the ref. [14] by the addition of the Euler term E2n. This term is no longer

equivalent to the Gauss-Bonnet term, because it is the maximal Lovelock form in that

dimension. This construction is locally equivalent, by virtue of the Euler theorem, to the

n−th Chern form

B2n−1 = n

∫ 1

0
dtεA1...A2nθA1A2(RA3A4 + t2θA3

F θFA4) × . . . × (RA2n−1A2n + t2θ
A2n−1

F θFA2n)

(2.14)

in terms of the continuous parameter t. This parametrization is useful not only to write

down a compact formula for the boundary term but to generate the relative coefficients

of the binomial expansion, as well. This fact has a deep geometrical origin as an explicit

realization of the Cartan homotopy operator, that permits to obtain the explicit form of

a boundary term whose exterior derivative is the difference of two invariant polynomials

for a given Lie group (See appendix A). It can be shown that the above boundary term

also cancels the divergences from radial infinity in the evaluation of the bulk Euclidean

action [15].

2.2 Kounterterms and Chern-Simons forms

Remarkably, the regularization prescription given by the maximal Chern-form in even

dimensions works equally well for Einstein-Gauss-Bonnet gravity, where the coupling con-

stant carried by B2n−1 takes a different value respect to the same problem in Einstein-

Hilbert [24]. The same situation is found in a generic even-dimensional Lovelock-AdS

theory, where the Kounterterms series (2.14) preserves its form, but again its coupling con-

stant changes accordingly [25]. This fact strongly suggests the universality of the boundary

terms that regularize the action for a set of inequivalent gravity theories (at least, the ones

that are Lovelock-type).

On the other hand, a finite action principle was set for Chern-Simons-AdS gravity,

a particular Lovelock theory in odd-dimensions that possesses a unique cosmological con-

stant, contains higher powers in the curvature and can be obtained from a Chern-Simons

– 6 –
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form for the AdS group connection. The guiding line to derive the correct form of the

boundary terms is restoring gauge invariance by the use of transgression forms.

As we can see from appendix A, the expression for the Kounterterms in Chern-Simons-

AdS gravity is given by a double integral in the parameters t, s ∈ [0, 1]

B2n = n

∫ 1

0
dt

∫ t

0
dsεA1...A2n+1θ

A1A2eA3

(

RA4A5 + t2θA4
F θFA5 +

s2

ℓ2
eA4eA5

)

× . . .

. . . ×
(

RA2nA2n+1 + t2θA2n

F θFA2n+1 +
s2

ℓ2
eA2neA2n+1

)

. (2.15)

In the spirit of the alternative regularization of AdS gravity in even dimensions, we will

assume universality of the form of the regularizing boundary terms in D = 2n + 1 dimen-

sions. In fact, as we shall explicitly demonstrate below, the boundary term (2.15) also leads

to a finite, well-defined action principle in odd-dimensional Einstein-Hilbert for a suitable

choice of its coupling constant c2n.

The relations (2.11) leave a residual Lorentz symmetry on ∂M and then, the boundary

term can also be written as

B2n = −2n

∫ 1

0
dt

∫ t

0
dsεa1...a2nKa1ea2

(

Ra3a4 − t2Ka3Ka4 +
s2

ℓ2
ea3ea4

)

× . . .

. . . ×
(

Ra2n−1a2n − t2Ka2n−1Ka2n +
s2

ℓ2
ea2n−1ea2n

)

, (2.16)

where Rab is the boundary 2-form curvature, related to the intrinsic curvature by Rab =
1
2Rkl

ije
a
ke

b
l dxi ∧ dxj .

The tensorial form of the Kounterterms can be worked out projecting all the quantities

in the boundary indices (see appendix B)

B2n = 2n
√
−h

∫ 1

0
dt

∫ t

0
dsδ

[i1...i2n−1]
[j1...j2n−1]K

j1
i1

(

1

2
Rj2j3

i2i3
− t2Kj2

i2
Kj3

i3
+

s2

ℓ2
δj2
i2

δj3
i3

)

× . . .

. . . ×
(

1

2
R

j2n−2j2n−1

i2n−2i2n−1
− t2K

j2n−2

i2n−2
K

j2n−1

i2n−1
+

s2

ℓ2
δ
j2n−2

i2n−2
δ
j2n−1

i2n−1

)

, (2.17)

In the language of differential forms, the gravitational action (2.1) can be written

in terms of the local orthonormal frame eA = eA
µ dxµ and the 2-form Lorentz curvature

R̂AB = 1
2R̂AB

µν dxµ∧dxν (constructed up from the spin connection as R̂AB = dωAB+ωA
CωCB)

as

I = κD

∫

M

εA1...AD

(

R̂A1A2 +
(D − 2)

Dℓ2
eA1eA2

)

eA3 . . . eAD + cd

∫

∂M

Bd. (2.18)

where the constant κD = (16πG(D−2)!)−1 and with the boundary term Bd given by (2.14)

and (2.15) for even and odd dimensions, respectively. The Lorentz curvature is related to

the spacetime Riemann tensor by R̂AB = 1
2R̂αβ

µν eA
αeB

β dxµ ∧ dxν .

An arbitrary variation of the above action produces the Einstein equations plus a

surface term Θ

δI =

∫

M

EAδeA + dΘ, (2.19)
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where EAδeA is the Einstein equation,

EAδeA =
1

16πG(D − 3)!
εAA2...AD

δeA

(

R̂A2A3 +
1

ℓ2
eA2eA3

)

eA4 . . . eAD , (2.20)

=
1

16πG

√
−G

(

R̂µν − 1

2
R̂Gµν − ΛGµν

)

δGµν . (2.21)

In the Palatini formulation of gravity, the contribution to Θ coming from the bulk

term is obtained from the variation of the Riemann tensor δR̂α
βµν = ∇µδΓ̂α

βν − ∇νδΓ̂
α
βµ.

For the radial foliation (2.2), the surface term will involve only certain components of the

connection Γ̂α
µν , related to the extrinsic curvature as

Γ̂ρ
ij =

1

N
Kij , Γ̂i

ρj = −NKi
j, (2.22)

such that it can be written as

Θ = −εa1a2...ad
δKa1ea2 . . . ead + cdδBd. (2.23)

The same coordinates frame implies that the components of the Lorentz curvature

R̂AB projected on ∂M are

R̂1a = DKa = DiK
a
j dxi ∧ dxj , (2.24)

R̂ab = Rab − KaKb =

(

1

2
Rab

ij − Ka
i Kb

j

)

dxi ∧ dxj (2.25)

where Di the covariant derivative in the boundary indices (defined with the submanifold

spin connection ωab) and we have dropped the components along dρ. eqs. (2.24) and (2.25)

are just the well-known Gauss-Coddazzi relations for a radial foliation (2.2)

R̂ρl
ij = − 1

N
∇[iK

l
j], (2.26)

R̂kl
ij = Rkl

ij − Kk
i K l

j + K l
iK

k
j . (2.27)

As an illustrative, simple example of the present procedure, in the next section we

show explicitly how the Kounterterms series in five dimensions leads to a well-posed ac-

tion principle for boundary conditions derived from the asymptotic form for AAdS space-

times (1.1), (1.2).

3. Five-dimensional case

Dirichlet counterterms are local functional that preserve general covariance at the bound-

ary. Kounterterms respect Lorentz-covariance in the tangent space, what provides a crite-

rion to select them. From the surface term (2.23), it is clear that Bd must be constructed

with the same parity as the bulk action, that is, the same invariant tensor ǫA1...AD
for the

Lorentz group (and not δ
[AB]
[CD]). In particular, this argument rules out the addition of topo-

logical invariants of the Pontryagin class in even dimensions and many possible boundary

terms in the case we are treating here.
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Kounterterms are built up as totally antisymmetric 2n−forms. This eliminates a pos-

sible inclusion of terms containing covariant derivatives of the intrinsic curvature, which

are discarded by the Bianchi identity ∇[mRkl
ij] = 0.

The extrinsic curvature can be defined in an arbitrary frame as KAB = −hC
AhD

BnC;D,

where nA is a unit vector normal to the boundary, and related to the SFF by θAB =

nAKB −nBKA, (KA = KA
BeB). In that way, we can always write down the Kounterterms

as a fully-covariant expression, independent of any particular foliation. In five dimensions

this is given by

B4 = ǫA1...A5θ
A1A2eA3

(

RA4A5 +
1

2
θA4

CθCA5 +
1

6ℓ2
eA4eA5

)

, (3.1)

with the equivalence in tensorial notation (see appendix B)

B4 =
√
−hδ

[i1i2i3]
[j1j2j3]

Kj1
i1

(

Rj2j3
i2i3

− Kj2
i2

Kj3
i3

+
1

3ℓ2
δj2
i2

δj3
i3

)

. (3.2)

3.1 Variational principle and asymptotic conditions

Arbitrary variations of the total action (2.1) produce a surface term

δI5 = −2

∫

∂M

κ5εabcdδK
aebeced + c4ǫabcdδK

aeb

(

Rcd − 3

2
KcKd +

1

6ℓ2
eced

)

+c4εabcdK
aδeb

(

Rcd − 1

2
KcKd +

1

2ℓ2
eced

)

. (3.3)

when equations of motion hold. The constant in front of the bulk action is κ5 =

1/(96πG).The above equation can be conveniently rewritten as

δI5 = −2

∫

∂M

κ5εabcdδK
aebeced + 2c4ǫabcdδK

aeb

(

R̂cd +
1

3ℓ2
eced

)

(3.4)

−c4εabcd(δK
aeb − Kaδeb)

(

Rcd − 1

2
KcKd +

1

2ℓ2
eced

)

, (3.5)

with the help of the Gauss-Coddazzi relation (2.25).

A well-posed variational principle for precise asymptotic conditions in AdS gravity is

essential to attain the finiteness of the conserved quantities and the Euclidean action. This

amounts to on-shell cancelation of the surface term (3.3) using boundary conditions derived

from the asymptotic form of AAdS spacetimes (1.1), (1.2).

In general, the Dirichlet variational problem for gravity is well-defined if one supple-

ments the action by the Gibbons-Hawking term and fixes the metric hij at the boundary.

In this way, the surface term coming from an arbitrary variation of the Dirichlet action

vanishes identically, no matter if the boundary is at a finite distance (e.g., on a brane, to

define the Israel matching conditions) or at infinity. However, it has been recently argued

in ref. [11] that the standard Dirichlet boundary condition for the metric hij does not really

make sense for manifolds with conformal boundary, as it is the case of AAdS spaces. It is

clear from eqs. (1.1), (1.2) that the variation of hij is divergent at ρ = 0 and one should
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instead fix the conformal structure g(0)ij . However, due to the divergence produced in this

way, the action requires additional boundary terms on top of the Gibbons-Hawking term,

that turn out to be the standard Dirichlet counterterms.

In the present formulation, we will consider a boundary condition that derives from

the asymptotic expansion of the extrinsic curvature

Ki
j = Kjlh

li =
1

ℓ
δi
j −

ρ

ℓ
(g−1

(0)g(1))
i
j −

ρ2

ℓ
(2g−1

(0)g(2) − g−1
(0)g(1)g

−1
(0)g(1))

i
j + . . . , (3.6)

in increasing powers of ρ. This asymptotic behavior implies that the extrinsic curvature

satisfies

Kj
i =

1

ℓ
δj
i , (3.7)

on the conformal boundary, and an arbitrary variation is given by

δKj
i = 0. (3.8)

Had we attempted to fix Kij = 1
ℓ

g(0)ij

ρ
+ . . ., we would have faced the same problem as

fixing the boundary metric hij . On the contrary, eq. (3.8) is a regular boundary condition

on the extrinsic curvature that can be derived from fixing g(0)ij due to the asymptotic form

of AAdS spaces. In particular, in the asymptotically flat limit (ℓ → ∞) this accident no

longer occurs.

The condition (3.7) has been also taken as the boundary data for the problem of

holographic reconstruction of the spacetime in terms of the extrinsic curvature in ref. [11].

Making explicit the indices in the term proportional to the curl εabcd(δK
aeb −Kaδeb),

the last line of eq. (3.5) is

εabcd εi1i2i3i4
[

δKj
i1

ea
j e

b
i2

+ δea
j e

b
l

(

Kj
i1

δl
i2
− K l

i2
δj
i1

)]

(

Rcd
i3i4

− Kc
i3

Kd
i4

+
1

ℓ2
ec
i3

ed
i4

)

d4x,

(3.9)

that vanishes identically when we take the condition (3.7) on the extrinsic curvature and its

variation (3.8). We assume a constant (negative) curvature in the asymptotic region (1.4),

that in the language of differential forms reads

R̂AB +
1

ℓ2
eAeB = 0, (3.10)

that in particular holds for the boundary indices. This is a local condition at the boundary

known as ALAdS (asymptotically locally AdS) that in principle does not impose further

restrictions on the global topology of the spacetime. Therefore, solutions of this class in-

clude not only point-like black holes as Schwarzschild-AdS and Kerr-AdS, but also extended

objects as black strings.

The coupling constant c4 is then fixed as

c4 =
3κ5ℓ

2

4
=

ℓ2

128πG
, (3.11)

to cancel the rest of the surface term.

Now that we know the coefficient in front of the boundary term, we notice that the

term proportional to
√
−hK carries an anomalous factor 1

64πG
compared to the one of the

Gibbons-Hawking term in eq. (1.3), what is a consequence of a different action principle.
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3.2 Conserved quantities

In the standard Dirichlet problem of gravity, the bulk contribution to (3.5) is canceled by

the Gibbons-Hawking term and no other terms along δKa can appear from the boundary

term Bct, as it is a functional only of intrinsic quantities.

In the present approach, the surface term (3.5) contains variations along the extrinsic

curvature, such that we cannot identify a quasilocal (boundary) stress tensor from the

variation of the total action.

However, we can always define the energy and other conserved charges associated to

asymptotic symmetries of a gravitational system through the Noether theorem.

In the appendix C we summarize the construction of the Noether charges for an ar-

bitrary Lagrangian. The conserved current in the case we are considering here is given

by

∗J = −Θ(ea,Ka, δea, δKa) − iξ(L5 + c4dB4), (3.12)

where L5 is the bulk Lagrangian, iξ is the interior derivative (also known as contraction

operator) with the Killing vector ξµ defined in the appendix C and Θ is the surface term

Θ =
ℓ2

32πG

[

ǫabcdδK
aeb

(

R̂cd +
1

ℓ2
eced

)

−1

2
ǫabcd(δK

aeb − Kaδeb)

(

Rcd − 1

2
KcKd +

1

2ℓ2
eced

)]

. (3.13)

The derivation of the conserved charges from the current extensively use the properties

of interior, exterior and Lie derivatives, Bianchi identity, and the equations of motion in dif-

ferential forms language. However, we will exploit a shortcut for the charges (C.7) pointed

out in appendix C, by identifying the contributions coming from the bulk Lagrangian and

the boundary term B4.

In doing so, the Noether charge is written as

Q(ξ) = K(ξ) + c4

∫

∂Σ

(

iξK
a δB4

δKa
+ iξe

a δB4

δea

)

(3.14)

where the first term is known as the Komar’s integral

K(ξ) =
1

48πG

∫

∂Σ
εabcd iξK

aebeced, (3.15)

and it is the conserved quantity associated to the bulk term in the gravity action.2

2In an arbitrary dimension D > 3, the Komar’s integral has the form

K(ξ) =
1

8πGN

Z

∂Σ

εa1...aD−1
iξK

a1ea2 . . . eaD−1 =
1

16πGN

Z

∂Σ

∇
µξνdΣµν ,

where dΣµν =
√

σ

(D−2)!
ǫµνα1 ...αD−2

dxα1∧. . .∧dxαD−2 is the dual of the area (D−2)-form (σ is the determinant

of the metric on the sphere SD−2). When evaluated for a timelike Killing vector on the Schwarzschild-AdS

solution, this formula gives a factor (D − 3)/(D − 2) times the mass, plus a divergence in the radial

coordinate. The divergence is usually canceled by background substraction, procedure that however does

not solve the problem of the anomalous Komar factor [26].
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The expression for the Noether charge appears to be naturally split in two parts,

associated to the first and second line of the surface term (3.13), respectively

Q(ξ) = q(ξ) + q0(ξ), (3.16)

q(ξ) =
ℓ2

32πG

∫

∂Σ
ǫabcdiξK

aeb

(

R̂cd +
1

ℓ2
eced

)

, (3.17)

q0(ξ) = − ℓ2

64πG

∫

∂Σ
ǫabcd

(

iξK
aeb + Kaiξe

b
)

(

Rcd − 1

2
KcKd +

1

2ℓ2
eced

)

. (3.18)

As we shall see below for concrete examples, the formula for q(ξ) provides the standard

conserved quantities (mass, angular momentum) for AAdS solutions. In tensorial notation,

q(ξ) takes the form

q(ξ) =
ℓ2

64πG

∫

∂Σ

√
−hǫi1...i4(ξ

kKi1
k )δi2

j2

(

R̂i3i4
j3j4

+
1

ℓ2
δ
[i3i4]
[j3j4]

)

dxj2dxj3dxj4 , (3.19)

where the product dxj2 ∧ dxj3 ∧ dxj4 stands for the volume element of the boundary of

the spatial section ∂Σ (i.e., boundary indices without the time). Notice that (3.19) is

proportional to the l.h.s. of eq. (1.4), and therefore vanishes identically for any solution of

global constant curvature, as AdS vacuum and spacetimes with topological identifications

that preserve AdS flatness.

The above reasoning leads us to consider (3.18) as a general formula for the vacuum

energy in five-dimensional AAdS spacetimes

q0(ξ)=− ℓ2

128πG

∫

∂Σ

√
−hǫi1i2i3i4ξ

k(Ki1
k δi2

j2
+Ki1

j2
δi2
k )

(

Ri3i4
j3j4

−1

2
K

[i3i4]
[j3j4]+

1

2ℓ2
δ
[i3i4]
[j3j4]

)

dxj2dxj3dxj4 ,

(3.20)

where we have introduced the shorthand

K
[ij]
[kl] = Ki

kK
j
l − Kj

kK
i
l . (3.21)

The regularization of the conserved quantities and the Euclidean action in five-

dimensional AAdS solutions is illustrated through concrete examples below.

3.3 Examples

Schwarzschild-AdS black hole and topological extensions. Static solutions to EH-

AdS gravity are given by Schwarzschild black hole metric. Due to the negative cosmological

constant, the transversal section Σk
D−2 can be the sphere SD−2, a (D − 2)-dim locally flat

space or the hyperboloid HD−2

ds2 = −∆2(r)dt2 +
dr2

∆2(r)
+ r2γmndθmdθn, (3.22)

where the metric function is

∆2(r) = k − 2ωDGµ

rD−3
+

r2

ℓ2
. (3.23)
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Here, µ appears as an integration constant, ωD = 8π
(D−2)V ol(SD−2)

and γm n (m,n =

1, . . . ,D − 2) is the metric of Σk
D−2 of constant curvature k = ±1, 0. The event horizon r+

is defined as the largest root of ∆2(r+) = 0.

In order to compute the mass and the vacuum energy, we use the following components

of the extrinsic and intrinsic curvatures

Kt
t = −∆′, Kn

m = −∆

r
δn
m, (3.24)

R
m1n1
m2n2

=
k

r2
δ
[m1n1]

[m2n2]
. (3.25)

where prime denotes the derivative d/dr, and the determinant of the boundary metric

√
−h = ∆

√
γrD−2. (3.26)

Notice the opposite sign in the leading order of the asymptotic behavior of Ki
j respect

to eq. (3.6), due to the change in the radial coordinate.

Thus, for the time-like Killing vector ξ = ∂/∂t, formula 3.19) gives

q(∂t) = M = 3!V ol(Σk
3) lim

r→∞
(∆2)′r

{

κ5r
2 + 2c4

(

k − ∆2 +
r2

3ℓ2

)}

, (3.27)

=
V ol(Σk

3)

V ol(S3)
µ, (3.28)

in agreement with the result from background-dependent methods, e.g., Hamiltonian for-

malism [27]. We have written eq. (3.27) as an intermediate step just to make clear the

contributions from the bulk and the boundary that will be useful for the black hole ther-

modynamics below.

Plugging the metric (3.22) into the formula (3.20), we obtain

q0(∂t) = E0 = −3!V ol(Σk
3)c4 lim

r→∞

(

∆2 − r(∆2)′

2

)(

k − 1

2
∆2 +

r2

2ℓ2

)

(3.29)

= (−k)2
3V ol(Σk

3)

64πG
ℓ2. (3.30)

The result for the spherical case (k = 1) is the Balasubramanian-Kraus vacuum energy

E0 = 3πℓ2

32G
for SAdS black hole that appears in the Dirichlet regularization of the stress

tensor [7].

In the case k = −1, cosmic censorship holds for a mass over a critical value

Mc = V ol(H3)
V ol(S3)

µc that separates black holes with hyperbolic transversal section from naked

singularities. This value, for an arbitrary dimension, is

µc = −ℓD−3

ωDG

√

(D − 3)D−3

(D − 1)D−1
, (3.31)

where ωD = 8π
(D−2)V ol(SD−2)

. The critical mass in five dimensions has the same value (with

opposite sign) as the vacuum energy (3.30). Therefore, despite the fact that in 5D AdS
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gravity there exist black holes with negative mass, the vacuum energy restores the positivity

of the total energy E = M + E0 [8].

We show now that the boundary term (3.2) makes finite the Euclidean action (2.1) for

five-dimensional SAdS solution, and that correctly describes black hole thermodynamics.

The Euclidean period β is defined as

β = T−1 =
4π

(∆2)′
∣

∣

∣

r+

(3.32)

where T is the black hole temperature. This condition comes from the requirement that,

in the Euclidean sector the solution (3.22) does not have a conical singularity at the coor-

dinates origin (r = r+). In the canonical ensemble, the Euclidean action

S = βE − IE , (3.33)

defines the entropy S and the thermodynamic energy

E = −∂IE

∂β
(3.34)

of a black hole for a fixed temperature. The Euclidean bulk action is evaluated for a static

black hole of the form (3.22) as a total derivative in the radial coordinate, such that

IE
bulk = −κ53!V ol(Σk

3)β [(∆2)′r3]
∣

∣

∞

r+
, (3.35)

and the Euclidean boundary term as

∫

∂M

BE
4 = −3!V ol(Σk

3)β

[

r(∆2)′
(

k − ∆2 +
r2

3ℓ2

)

+

(

∆2 − r(∆2)′

2

)(

k − 1

2
∆2 +

r2

2ℓ2

)]

∣

∣

∣

∞

.

(3.36)

The total Euclidean action IE
5 = IE

bulk+c4

∫

∂M
BE

4 contains two contributions: the first

one from the bulk at radial infinity plus the boundary term that can be identified (using

eqs. (3.27) and (3.29) as −β(M+E0).

Therefore, the finiteness of the Noether charges for static black holes ensures that the

divergencies at r = ∞ of the bulk Euclidean action are exactly canceled by the ones in the

boundary term B4.

It is reassuring to check that the thermodynamic energy definition

E = −∂IE/∂r+

∂β/∂r+
= M + E0, (3.37)

recovers the same result for the total energy as from the Noether charges defined above.

Finally, the entropy is the horizon contribution of the bulk Euclidean action

S =
vol(Σk

3) r3
+

4G
=

Area

4G
. (3.38)
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-Kerr-AdS black hole. The general Kerr-AdS metric in five dimensions possesses two

rotation parameters a, b, and it can be written in Boyer-Lindquist coordinates as [28]

ds2 = −∆r

ρ2

(

dt − a sin2 θ

Ξa
dφ − b cos2 θ

Ξb
dψ

)2

+
ρ2dr2

∆r
+

ρ2dθ2

∆θ
+

+
∆θ sin2 θ

ρ2

(

adt −
(

r2 + a2
)

Ξa
dφ

)2

+
∆θ cos2 θ

ρ2

(

bdt −
(

r2 + b2
)

Ξb

dψ

)2

+

+

(

1 + r2/ℓ2
)

r2ρ2

(

abdt − b
(

r2 + a2
)

sin2 θ

Ξa
dφ − a

(

r2 + b2
)

cos2 θ

Ξb
dψ

)2

, (3.39)

where the functions in the metric are

∆r ≡ 1

r2

(

r2 + a2
) (

r2 + b2
) (

1 + r2/ℓ2
)

− 2m, (3.40)

∆θ ≡ 1 − a2

ℓ2
cos2 θ − b2

ℓ2
sin2 θ, (3.41)

ρ2 ≡ r2 + a2 cos2 θ + b2 sin2 θ, (3.42)

Ξa ≡ 1 − a2

ℓ2
, Ξb ≡ 1 − b2

ℓ2
, (3.43)

0 ≤ θ ≤ π/2, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 2π. (3.44)

The event horizon r+ is the largest solution of the equation ∆r(r+) = 0, whose area is

Area =
2π2(r2

+ + a2)(r2
+ + b2)

r+ΞaΞb
. (3.45)

Evaluating the charge formula (3.19) for the metric (3.39)–(3.44), we have

E′ = q(∂t) =
3π

4G

m

ΞaΞb

, (3.46)

E0 = q0(∂t) =
πℓ2

96ΞaΞbG

(

7ΞaΞb + Ξ2
a + Ξ2

b

)

, (3.47)

and the angular momenta

Ja = q(∂φ) =
π

2G

ma

Ξ2
aΞb

, (3.48)

Jb = q(∂ψ) =
π

2G

mb

ΞaΞ
2
b

. (3.49)

The quantity (3.46) is the energy obtained by Awad and Johnson in [29] that, however,

does not satisfy the first law of black hole thermodynamics, as has been pointed out in [30].

The expression for the vacuum energy E0 is in agreement with [29], and it is equivalent to

the Papadimitriou-Skenderis result [11]

E0 =
3πℓ2

32G

(

1 +
(Ξa − Ξb)

2

9ΞaΞb

)

, (3.50)
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both computed using different versions of the counterterms method.

Notice that the physical energy for Kerr-AdS is obtained with a Killing vector that

does not rotate at infinity ξ = ∂t + a
ℓ2

∂φ + b
ℓ2

∂ψ,

E = q

(

∂t +
a

ℓ2
∂φ +

b

ℓ2
∂ψ

)

=
πm

4GΞ2
aΞ

2
b

(2Ξa + 2Ξb − ΞaΞb) . (3.51)

The on-shell Euclidean action is

IE
5 =

β

2πGℓ2

∫ ∞

r+

dr

∫

dΩN
√
−h + βc4

∫

dΩ (B4)|r=∞ (3.52)

and we see that the boundary term cancels out the divergences coming from the bulk

action, such that we have the finite result

IE
5 =

βπ

96ℓ2ΞaΞbG

(

−a4 + 9a2ℓ2 + 24r2
+a2 + 17a2b2 − 24mℓ2 − 9ℓ4 + 24r4

+ −

−b4 + 9ℓ2b2 + 24r2
+b2), (3.53)

This expression can also be put into the form of Awad-Johnson

IE
5 =

βπ

96ℓ2ΞaΞbG

(

12
(

r2
+/ℓ2

)

(1 − Ξa − Ξb) + Ξ2
a + Ξ2

b + ΞaΞb + 12r4
+/ℓ4−

−2(a4 + b4)/ℓ4 − 12
(

a2b2/ℓ4
)

(ℓ2/r2
+ − 1/3) − 12

)

, (3.54)

or the more compact one obtained by Papadimitriou-Skenderis

IE
5 = βE0 +

βπ

4Gℓ2ΞaΞb
(mℓ2 − (r2

+ + a2)(r2
+ + b2)). (3.55)

In order to obtain the correct value for the entropy, one must use E = E + E0 as

the total energy for the black hole system, the angular velocities respect to a non-rotating

frame at infinity

Ωa =
a(1 + r2

+ℓ−2)

r2
+ + a2

, Ωb =
b(1 + r2

+ℓ−2)

r2
+ + b2

, (3.56)

and the Euclidean period

β =
2π(r2

+ + a2)(r2
+ + b2)ℓ2

2r6
+ + r4

+(ℓ2 + b2 + a2) − a2b2ℓ2
. (3.57)

The above quantities satisfy the thermodynamical relation

S = β(E − ΩaJa − ΩbJb) − IE
5 =

Area

4G
(3.58)

that recovers the entropy in terms of the area for Kerr-AdS black hole (3.45).
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-Clarkson-Mann solitons. In recent papers [31, 32], new solitons in cosmological space-

times were presented. These solutions resemble the Eguchi-Hanson metrics in four di-

mensions [33] and in the case of a negative cosmological constant, they posses AdS/Zp

asymptotics and a lower energy than the global AdS or even global AdS/Zp spacetimes.

The Clarkson-Mann-AdS soliton metric reads

ds2 = −g(r)dt2 +
r2f(r)

4
[dψ + cos θdφ]2 +

dr2

f(r)g(r)
+

r2

4
dΩ2

2,

g(r) = 1 +
r2

ℓ2
, f(r) = 1 − a4

r4
, (3.59)

where dΩ2
2 is the metric of the unit 2−sphere.

In order to remove the stringlike singularity at r = a, the period of ψ must be 4π/p

and the parameter a satisfies the relation

a2 = ℓ2

(

p2

4
− 1

)

, (3.60)

with p ≥ 3.

The energy for this solitonic solution is negative

E = q(∂t) = − πa4

8Gℓ2p
(3.61)

in agreement to the result computed using the standard counterterms procedure in [31, 34].

The present method also reproduces the value of the vacuum energy, which is lower than

that of global AdS spacetime

E0 = q0(∂t) =
3πℓ2

32Gp
. (3.62)

The negative mass (3.61) has also been found in [35] through a spin-connection formulation

of the Abbott-Deser [36] (and, more recently, Deser-Tekin [37, 38]) method.

The total Euclidean action

IE = IE
bulk + c4

∫

∂M

BE
4 , (3.63)

turns out to be

IE = β(E + E0) (3.64)

where the Euclidean period β remains arbitrary, as the solution is horizonless. As a con-

sequence, the entropy of the system is zero.

4. Seven-dimensional case

Before we go into the general odd-dimensional case, let us consider D = 7 also for illustra-

tive purposes. The expression for the boundary term

B6 = −6

∫ 1

0
dt

∫ t

0
dsεa1...a6K

a1ea2

(

Ra3a4 − t2Ka3Ka4 +
s2

ℓ2
ea3ea4

)

×

×
(

Ra5a6 − t2Ka5Ka6 +
s2

ℓ2
ea5ea6

)

, (4.1)
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after the parametric integrations are performed is given by

B6 = −3εa1...a6K
a1ea2

(

Ra3a4Ra5a6 − 1

3
Ka3Ka4Ka5Ka6 +

1

15ℓ4
ea3ea4ea5ea6

−Ra3a4Ka5Ka6 +
1

3ℓ2
Ra3a4ea5ea6 − 2

9ℓ2
Ka3Ka4ea5ea6

)

. (4.2)

The equivalent tensorial form of the Kounterterms for seven dimensions is

B6 =
3

4

√
−hδ

[i1...i5]
[j1...j5]K

j1
i1

(

Rj2j3
i2i3

Rj4j5
i4i5

− 4

3
Kj2

i2
Kj3

i3
Kj4

i4
Kj5

i5
+

4

15ℓ4
δj2
i2

δj3
i3

δj4
i4

δj5
i5

−2Rj2j3
i2i3

Kj4
i4

Kj5
i5

+
2

3ℓ2
Rj2j3

i2i3
δj4
i4

δj5
i5

− 8

9ℓ2
Kj2

i2
Kj3

i3
δj4
i4

δj5
i5

)

. (4.3)

4.1 Action principle

Now we develop a similar treatment as in the five-dimensional case, writing down an

adequate form of the variation of the boundary term, in order to use suitable boundary

conditions for AAdS spacetimes. Varying the seven-dimensional action, we have — on-shell

— a total surface term

δI7 = −2

∫

∂M

κ7ǫabcdfgδK
aebecedefeg +

3

2
c6ǫabcdfgδK

aeb

(

RcdRfg +
5

3
KcKdKfKg

+
1

15ℓ4
ecedefeg−3RcdKfKg+

1

3ℓ2
Rcdefeg− 2

3ℓ2
KcKdefeg

)

+
3

2
c6ǫabcdfgK

aδeb ×

×
(

RcdRfg+
1

3
KcKdKfKg+

1

3ℓ4
ecedefeg−RcdKfKg+

1

ℓ2
Rcdefeg− 2

3ℓ2
KcKdefeg

)

.

(4.4)

The constant in front of the bulk action is κ7 = 1/(16πG × 5!). The total variation

can be put into the form

δI7 =−2

∫

∂M

κ7ǫabcdfgδK
aebecedefeg+3c6ǫabcdfgδK

aeb

(

R̂cdR̂fg+
2

3ℓ2
R̂cdefeg+

1

5ℓ4
ecedefeg

)

−3

2
c6ǫabcdfg(δK

aeb − Kaδeb)

(

RcdRfg +
1

3
KcKdKfKg +

1

3ℓ4
ecedefeg − RcdKfKg

+
1

ℓ2
Rcdefeg − 2

3ℓ2
KcKdefeg

)

. (4.5)

using again the Gauss-Coddazzi relation (2.25). The above relation already hints a pattern

for the surface term coming from the total variation of the action,

δI7 =−2

∫

∂M

κ7ǫabcdfgδK
aebecedefeg+3c6

∫ 1

0
dtǫabcdfgδK

aeb

(

R̂cd+
t2

ℓ2
eced

)(

R̂fg+
t2

ℓ2
efeg

)

−3c6

∫ 1

0
dt tǫabcdfg(δK

aeb−Kaδeb)

(

Rcd−t2KcKd+
t2

ℓ2
eced

)(

Rfg−t2KfKg+
t2

ℓ2
efeg

)

(4.6)

that we will confirm below in the general odd-dimensional case.
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As in the five-dimensional case, we consider a more explicit form of the second line

εabcdfg εi1i2i3i4i5i6
[

δKj
i1

ea
j e

b
i2

+ δea
j e

b
l

(

Kj
i1

δl
i2
− K l

i2
δj
i1

)]

×

×
∫ 1

0
dt t

(

1

2
Rcd

i3i4
− t2Kc

i3
Kd

i4
+

t2

ℓ2
ec
i3

ed
i4

) (

1

2
Rfg

i5i6
− t2Kf

i5
Kg

i6
+

t2

ℓ2
ef
i5

eg
i6

)

d6x, (4.7)

that again vanishes identically for the boundary condition on the extrinsic curvature (3.7)

and the corresponding variation (3.8). Thus, the problem of a well-defined action principle

amounts to fixing the coupling of the boundary term c6. In the asymptotic region the

spacetime curvature is constant and then, inserting (3.10) in the first line of eq. (4.6), we

have

δI7 = −2

∫

∂M

ǫabcdfgδK
aebecedefeg

(

κ7 + 3
c6

ℓ4

∫ 1

0
dt(−1 + t2)2

)

. (4.8)

Thus, the cancelation of the surface term implies

c6 = −5

8
κ7ℓ

4 = − ℓ4

16πG × 192
. (4.9)

Now that we have achieved a well-posed action principle, we discuss the construction

of the Noether charges that derive from it.

4.2 Conserved charges

The Noether current for the seven-dimensional case is

∗J = −Θ(ea,Ka, δea, δKa) − iξ(L7 + c6dB6), (4.10)

where L7 is the bulk Lagrangian and Θ is the surface term

Θ = −2κ7

∫

∂M

εabcdfgδK
aeb

[

ecedefeg − 15

8
ℓ4

∫ 1

0
dt

(

R̂cd +
t2

ℓ2
eced

)(

R̂fg +
t2

ℓ2
efeg

)]

+
15

8
ℓ4

∫ 1

0
dt tεabcdfg(δK

aeb−Kaδeb)

(

Rcd−t2KcKd+
t2

ℓ2
eced

)(

Rfg−t2KfKg+
t2

ℓ2
efeg

)

(4.11)

Carrying out the construction in appendix C for a bulk Lagrangian supplemented in a

boundary term, the Noether charge is written as

Q(ξ) =

∫

∂Σ
2κ7εabcdfg iξK

aebecedefeg + c6

(

iξK
a δB6

δKa
+ iξe

a δB6

δea

)

(4.12)

The formula for the conserved quantities contains two contributions

Q(ξ) = q(ξ) + q0(ξ), (4.13)

that can be traced back to the first and second lines in the surface term (

q(ξ) = 2κ7

∫

∂Σ
εabcdfgiξK

aeb

[

ecedefeg − 15

8
ℓ4

∫ 1

0
dt

(

R̂cd +
t2

ℓ2
eced

)(

R̂fg +
t2

ℓ2
efeg

)]

,

(4.14)
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will provide the mass and angular momentum for AAdS solutions. Equivalently, eq. (4.14)

can be factorized as

q(ξ) = −30

8
κ7ℓ

4

∫

∂Σ
εabcdfgiξK

aeb

(

R̂cd +
1

ℓ2
eced

)(

R̂fg − 1

3ℓ2
efeg

)

(4.15)

that in its tensorial form

q(ξ)=− ℓ4

16πG×128

∫

∂Σ

√
−hεi1...i6(ξ

kKi1
k )δi2

j2

(

R̂i3i4
j3j4

+
1

ℓ2
δ
[i3i4]
[j3j4]

)(

R̂i5i6
j5j6

− 1

3ℓ2
δ
[i5i6]
[j5j6]

)

dxj2 . . . dxj6 ,

(4.16)

is proportional to the curvature for the AdS group and, therefore, identically vanishing

for (global) AdS spacetime. The product dxj2 ∧ . . . ∧ dxj6 is the volume element of the

boundary of the spatial section ∂Σ (at constant time).

As a consequence, the additional term q0 in the conserved quantities is responsible for

the existence of a vacuum energy

q0(ξ) =
30

8
κ7ℓ

4

∫

∂Σ

∫ 1

0
dt tεabcdfg

(

iξK
aeb + Kaiξe

b
)

(

Rcd − t2KcKd +
t2

ℓ2
eced

)

×

×
(

Rfg − t2KfKg +
t2

ℓ2
efeg

)

,

=
ℓ4

16πG×128

∫

∂Σ

∫ 1

0
dt t

√
−hεi1...i6ξ

k(Ki1
k δi2

j2
+Ki1

j2
δi2
k )

(

Ri3i4
j3j4

−t2K
[i3i4]
[j3j4]+

t2

ℓ2
δ
[i3i4]
[j3j4]

)

×

×
(

Ri5i6
j5j6

− t2K
[i5i6]
[j5j6]

+
t2

ℓ2
δ
[i5i6]
[j5j6]

)

dxj2 . . . dxj6 (4.17)

where we have kept the parametric integral because, otherwise, the expression is more

involved.

4.3 Examples

Topological static black holes. For the seven-dimensional static metric specified by

eqs. (3.22)-(Killing vector ξ = ∂t. Using the relations (3.24)–(3.26), we obtain

q(∂t) = M = 5!V ol(Σk
5) lim

r→∞
(∆2)′r

{

κ7

[

r4 + 3c6

∫ 1

0
dt

(

k − ∆2 + t2
r2

ℓ2

)2]}

(4.18)

=
V ol(Σk

5)

V ol(S5)
µ. (4.19)

for the mass, whereas for the vacuum energy takes the negative value

q0(∂t) = E0 = −2 × 5!c6V ol(Σk
5) lim

r→∞

(

∆2 − r(∆2)′

2

)∫ 1

0
dt t

(

k − t2∆2 + t2
r2

ℓ2

)2

(4.20)

= (−k)3
5ℓ4

128πG
V ol(Σk

5). (4.21)

We have included an intermediate step in the computation of both the mass and vac-

uum energy, because these expressions will appear again in the evaluation of the Euclidean

action.
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With the Euclidean period β defined as in eq. (3.32), the Euclidean bulk action, eval-

uated for a static black hole of the form (3.22) in seven dimensions is

IE
bulk = −5!κ7V ol(Σk

5)β [(∆2)′r5]
∣

∣

∞

r+
. (4.22)

The boundary is defined only at the asymptotic region and then, the Euclidean bound-

ary term is

∫

∂M

BE
6 = 2 × 5!V ol(Σk

5)β

[

r(∆2)′

2

∫ 1

0
dt

(

k − ∆2 +
t2r2

ℓ2

)2

+

+

(

∆2 − r(∆2)′

2

)∫ 1

0
dt t

(

k − t2∆2 + t2
r2

ℓ2

)2]∣

∣

∣

∣

∞

. (4.23)

such that in the total Euclidean action

IE
7 = IE

bulk + c6

∫

∂M

BE
6 (4.24)

the contribution at r = ∞ can be read off from eqs. (4.18), (

IE
7 =

V ol(Σk
5)

16πG
βr5

+ (∆2)′
∣

∣

r+
− β(M + E0). (4.25)

Using the definition of thermodynamic energy E in eq. (3.37) –that is equivalent to the

result obtained from the Noether theorem– we obtain the entropy as the Euclidean bulk

action evaluated at r = r+

S =
V ol(Σk

5)r
5
+

4G
=

Area

4G
. (4.26)

Kerr-AdS7 black hole. The number of independent rotation parameters for

D−dimensional Kerr-AdS metric is equal to the number of Casimir invariants for the

rotation group SO(D − 1), which is the integer part of (D − 1)/2. The general rotating

black hole in seven-dimensional AdS gravity then possesses three rotation parameters, but

we shall consider below the particular case of a single rotation parameter to show the

finiteness of the conserved quantities and Euclidean action.

The line element for the one-parameter Kerr-AdS7 spacetime is

ds2 = −∆r

ρ2

(

dt − a sin2 θ

Ξ
dφ

)2

+ r2 cos2 θdψ2 +
ρ2dr2

∆r
+

ρ2dθ2

∆θ

+

+
∆θ sin2 θ

ρ2

(

adt −
(

r2 + a2
)

Ξ
dφ

)2

+ r2 cos2 θdΩ2
3, (4.27)

where the functions in the metric are

∆r =
(

r2 + a2
) (

1 + r2/ℓ2
)

− 2m/r2, (4.28)

∆θ ≡ 1 − a2

ℓ2
cos2 θ, (4.29)

ρ2 ≡ r2 + a2 cos2 θ, Ξ ≡ 1 − a2

ℓ2
, (4.30)
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and dΩ2
3 is the metric of the 3−sphere

dΩ2
3 = dψ2 + sin2 ψdη2 + cos2 ψdβ2 (4.31)

and the angles range is θ, ψ ∈ [0, π/2] and φ, η, β ∈ [0, 2π].

The area of the event horizon is

Area = π3 r3
+(r2

+ + a2)

Ξ
. (4.32)

Using the charge formulas (4.16) and (4.17) for the metric (4.27)–(4.31) yields

E′ = q(∂t) =
5π2

8G

m

Ξ
, (4.33)

E0 = q0(∂t) = − π2

1280ΞGℓ2

(

50ℓ6 − 50a2ℓ4 + 5a4ℓ2 + a6
)

, (4.34)

and the angular momentum

J = q(∂φ) =
π2

4G

ma

Ξ2
. (4.35)

The values in eqs. (4.33), (4.34) and (4.35) agree with the ones computed using a

Dirichlet counterterms regularization [10, 29]. The vacuum energy can be also written as

E0 = −5π2ℓ4

128G

(

1 +
(1 − Ξ)2 (6 − Ξ)

50Ξ

)

(4.36)

in order to make more manifest the matching with the vacuum energy for Schwarzchild-

AdS (4.21) in the non-rotating limit3 and to try to infer the general vacuum energy in the

case of three different rotation parameters.

As pointed out in the five-dimensional section above, the physical energy for a Kerr-

AdS black hole is the conserved quantity associated to a non-rotating asymptotic timelike

Killing vector ξ = ∂t + a
ℓ2

∂φ [30]

E = q

(

∂t +
a

ℓ2
∂φ

)

=
mπ2

8GΞ2
(2 + 3Ξ) , (4.37)

in agreement with the formulas in refs. [30, 39 – 41], specialized to a single nonvanishing

rotation parameter.

In order to complete the discussion about regularization of this seven-dimensional

solution, we compute the on-shell Euclidean action, that for an stationary spacetime is

given by

IE
7 =

3β

4πGℓ2

∫ ∞

r+

dr

∫

dΩN
√

h + βc6

∫

dΩ (B6)|r=∞ , (4.38)

where the Euclidean period is

β =
2π(r2

+ + a2)r+

3r4
+/ℓ2 + 2r2

+(1 + a2/ℓ2) + a2
. (4.39)

3The volume of S5 is π3.
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The divergences at radial infinity in the bulk action are exactly canceled by the ones

in the Euclidean boundary term, such that we get the finite result

IE
7 = − βπ2ℓ4

1280ΞG

[

160

(

r4
+a2

ℓ6
+

r6
+

ℓ6
− m

ℓ4

)

+
a6

ℓ6
+ 5

a4

ℓ4
+ 50Ξ

]

, (4.40)

that can be conveniently rewritten as

IE
7 = βE0 + I ′E7 , (4.41)

where

I ′E7 =
βπ2

8Gℓ2Ξ
(mℓ2 − r4

+(r2
+ + a2)) (4.42)

corresponds to the value of the Euclidean action computed in a background-substraction

method [30]. Eq. (4.42) satisfies the thermodynamical relation

S = β(E − ΩJ) − I ′E7 =
Area

4G
, (4.43)

for the energy (4.37), angular momentum (4.35), the angular velocity respect to a non-

rotating frame at infinity

Ω =
a(1 + r2

+ℓ−2)

r2
+ + a2

, (4.44)

and the area of the event horizon

Area = π3 r3
+(r2

+ + a2)

Ξ
. (4.45)

In turn, the Euclidean action (4.41), computed using the background-independent

Kounterterms prescription, obeys

S = β(E − ΩJ) − IE
7 =

Area

4G
, (4.46)

for a thermodynamical energy consistently shifted in the vacuum energy E = E + E0.

5. General odd-dimensional case

We have already introduced the general form the Kounterterms series adopts in any odd

dimension D = 2n+1, eqs. (2.15)–(2.17). The parametric integrations provide the relative

coefficients of the boundary terms when eq. (2.17) is expanded as a polynomial in the

extrinsic and intrinsic curvature

B2n = n!
√
−h

n−1
∑

p=0

(2n − 2p − 3)!!

ℓ2(n−1−p)
b
(p)
2n , (5.1)

where

b
(p)
2n = δ

[i1···i2p+1]

[j1···j2p+1]

p
∑

q=0

(−1)p−q

(p − q)!q!

2n−(p+q+1)

(n − q)
Rj1j2

i1i2
· · ·Rj2q−1j2q

i2q−1i2q
K

j2q+1

i2q+1
· · ·Kj2p+1

i2p+1
. (5.2)
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The surface term obtained from an arbitrary variation of the action (2.1)–or equiv-

alently, (2.18)– has a more involved form in the general odd-dimensional case. In the

appendix D, we summarize the process of variation of the action in the general case, cast

in an appropriate form that allows us to impose the asymptotic conditions for AAdS space-

times discussed above

δI2n+1 = −2

∫

∂M

ǫa1...a2nδKa1ea2

[

κ
D
ea3 . . . ea2n + nc2n

∫ 1

0
dt

(

R̂a3a4 +
t2

ℓ2
ea3ea4

)

× . . .

×
(

R̂a2n−1a2n +
t2

ℓ2
ea2n−1ea2n

)]

−nc2n

∫ 1

0
dt tǫa1...a2n(δKa1ea2 − Ka1δea2)

(

Ra3a4 − t2Ka3Ka4 +
t2

ℓ2
ea3ea4

)

× . . .

×
(

Ra2n−1a2n − t2Ka2n−1Ka2n +
t2

ℓ2
ea2n−1ea2n

)

. (5.3)

As we have already seen in the five and seven-dimensional cases, no matter the terms

that multiply the curl ǫa1a2...a2n(δKa1ea2−Ka1δea2), the asymptotic conditions (making the

full action stationary then reduces to fix the coupling constant c2n of the boundary term.

This can be done demanding the spacetime to be of constant curvature at the asymptotic

region (eq. (3.10)). In a Riemannian manifold, this condition is equivalent to asymptotic

flatness for the curvature of the AdS group

F = dA + A ∧ A =
1

2

(

R̂AB +
eAeB

ℓ2

)

JAB +
TA

ℓ
PA, (5.4)

where A = 1
2ωABJAB + eA

ℓ
PA is the SO(D − 1, 2) group connection field, {JAB , PA} are

the generators of AdS rotations and translations, respectively, and TA = 1
2TA

µνdxµ ∧ dxν is

the two-form torsion.

Assuming (3.10), we obtain the value

c2n = −ℓ2n−2 κ
D

n

[ ∫ 1

0
dt(t2 − 1)n−1

]−1

, (5.5)

= − (−ℓ2)n−1

4n+1πGn [(n − 1)!]2
(5.6)

whose fixing is equivalent to canceling the highest-order divergences in the Euclidean action.

5.1 Noether charges

The conserved current associated to an isometry and prescribed by the Noether theorem,

in the general odd-dimensional case is

∗J = −Θ(ea,Ka, δea, δKa) − iξ(L2n+1 + c2ndB2n). (5.7)

Here, L2n+1 is the bulk Lagrangian in 2n+1 dimensions, B2n is the regularizing Kountert-

erms series and Θ is the surface term in the variation of the action (5.3).
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Either replacing the explicit form of the terms in eq. (5.7) to write down the Noether

current as ∗J = dQ(ξ) or employing the shortcut to the charge derivation in appendix C

Q(ξ) =

∫

∂Σ
2κDεa1...a2n iξK

a1ea2 . . . ea2n + c2n

(

iξK
a δB2n

δKa
+ iξe

a δB2n

δea

)

(5.8)

the conserved charge is split as

Q(ξ) = q(ξ) + q0(ξ). (5.9)

The first contribution can be traced back to the first two lines in the surface term (5.3)

q(ξ) =
1

2n−2

∫

∂Σ
κ

D

√
−hǫi1...i2n(ξkKi1

k )δi2
j2

[

δ
[i3i4]
[j3j4]

. . . δ
[i2n−1i2n]
[j2n−1j2n]+

+nc2n

∫ 1

0
dt

(

R̂i3i4
j3j4

+
t2

ℓ2
δ
[i3i4]
[j3j4]

)

. . .

(

R̂
i2n−1i2n

j2n−1j2n
+

t2

ℓ2
δ
[i2n−1i2n]
[j2n−1j2n]

)]

dxj2 . . . dxj2n ,(5.10)

and the second one comes from the curl term in the same term

q0(ξ) = −nc2n

2n−2

∫

∂Σ

√
−h

∫ 1

0
dt tǫi1i2...i2nξk(δi2

j2
Ki1

k +δi2
k Ki1

j2
)

(

Ri3i4
j3j4

−t2K
[i3i4]
[j3j4]

+
t2

ℓ2
δ
[i3i4]
[j3j4]

)

. . .

(

R
i2n−1i2n

j2n−1j2n
− t2K

[i2n−1i2n]
[j2n−1j2n] +

t2

ℓ2
δ
[i2n−1i2n]
[j2n−1j2n]

)

dxj2dxj3 . . . dxj2n . (5.11)

Evaluating the formula (5.10) for ξ = ∂t in AAdS static black holes (3.22)–(3.23) gives

q(∂t) = (D − 2)!V ol(Σk
D−2) lim

r→∞
(∆2)′r

{

κ
D
r2(n−1) + nc2n

∫ 1

0
dt

(

k − ∆2 +
t2r2

ℓ2

)n−1}

,

(5.12)

where the derivative of the function in the metric is

(∆2)′r = 2(D − 3)
ωDGµ

rD−3
+ 2

r2

ℓ2
. (5.13)

Expanding the second term as

nc2n

∫ 1

0
dt

(

k − ∆2 +
t2r2

ℓ2

)n−1

= κD

(

−r2(n−1) + (2n − 1)ωDG
ℓ2

r2
µ + . . .

)

(5.14)

where the additional contributions of lower order in r are irrelevant in the limit r → ∞,

the topological black hole mass is finally

q(∂t) = M =
V ol(Σk

D−2)

V ol(SD−2)
µ.

The other formula in the conserved charge, q0(ξ), specialized for a timelike Killing

vector and topological black holes, produces

q0(∂t) = −2c2n(D − 2)!V ol(Σk
D−2) lim

r→∞

(

∆2 − r(∆2)′

2

)
∫ 1

0
dt t

(

k − t2∆2 +
t2r2

ℓ2

)n−1

,

(5.15)
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where the explicit evaluation of

(

∆2 − r(∆2)′

2

)

= k − (D − 1)
ωDG

rD−3
µ, (5.16)

(

k − t2∆2 +
t2r2

ℓ2

)

= k(1 − t2) + 2t2
ωDG

rD−3
µ, (5.17)

introduces at most finite contributions to the zero-point (vacuum) energy

q0(∂t) = E0 = (−k)n
V ol(Σk

D−2)

8πG
ℓ2n−2 (2n − 1)!!2

(2n)!
. (5.18)

This expression corroborates the general formula for the vacuum energy for odd-

dimensional AdS spacetime conjectured in ref. [8], based on an extrapolation of explicit

results in the counterterms method up to nine dimensions.

In order to verify the consistency of the black hole thermodynamics, we compute the

total Euclidean action

IE
2n+1 = IE

bulk + c2n

∫

∂M

BE
2n, (5.19)

for SAdS black hole. The bulk term is a total derivative, such that the integration in the

radial coordinate in the interval [r+,∞) is simply

IE
bulk = −κD(D − 2)!V ol(Σk

D−2)β{(∆2)′rD−2}|∞r+
, (5.20)

and the Euclidean boundary term is

∫

∂M

BE
2n = 2(D − 2)!V ol(Σk

D−2)β

[

r(∆2)′

2

∫ 1

0
dt

(

k − ∆2 +
t2r2

ℓ2

)n−1

+ (5.21)

+

(

∆2 − r(∆2)′

2

)
∫ 1

0
dt t

(

k − t2∆2 +
t2r2

ℓ2

)n−1]∣

∣

∣

∞

. (5.22)

The total contribution at r = ∞ can be identify as −β(M + E0) and then the total

Euclidean action is

IE
2n+1 =

V ol(Σk
D−2)

16πG
βrD−2

+ (∆2)′
∣

∣

r+
− β(M + E0). (5.23)

The definition of thermodynamic energy E in eq. (3.37) recovers the total energy in

the Noether theorem Q(∂t) = q(∂t) + q0(∂t), such that eq. (3.33) implies an entropy for

SAdS black hole

S =
V ol(Σk

D−2)r
D−2
+

4G
=

Area

4G
. (5.24)

6. Conclusions

In this paper, we have explicitly shown the tensorial form of the Kounterterms that regu-

larize the action for AdS gravity in all odd dimensions.

The key point of the construction is a well-principle action principle that respects

boundary conditions consistent with the asymptotic behavior of a generic AAdS spacetime.
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A definite form of the boundary terms achieves a finite action principle: the action

is stationary under arbitrary variations of the fields and the conserved charges and the

Euclidean action are finite.

In the general odd-dimensional case, we have not computed the conserved quantities

in AAdS solutions other than for topological SAdS black holes.

Further evaluation of more complex solutions will be certainly more involved, but it

could also reveal the general form that the vacuum energy adopts for certain AAdS spaces.

Particularly interesting could be extending the results of the vacuum energy in refs. [29, 12]

to the recently generalized multi-parameter Kerr-AdS black hole [30]. It is also worthwhile

to notice that the existing results on vacuum energy for Kerr-AdS solutions, reproduced

here, have been critically revised in ref.rotation parameters. There, it is claimed that, in

the same way the energy and the angular velocities are referred to a coordinate frame that

is nonrotating at infinity, one should choose the Einstein static universe as the metric on

the conformal boundary of the rotating black hole. As a consequence, the corresponding

Casimir energy is genuinely a constant and matches the one for SAdS black hole.

But, how can we be sure that q0(∂t) would always produce the vacuum energy?

The reasoning is quite simple and has to do with the general form of the other quantity

that enters in the Noether charge, q(ξ). It can be proved that eq. (5.10) can be factorized

by the l.h.s. of eq. (1.4), in the corresponding boundary indices

q(ξ) =
nc2n

2n−2

∫

∂Σ

√
−hǫi1...i2n(ξkKi1

k )δi2
j2

(

R̂i3i4
j3j4

+
1

ℓ2
δ
[i3i4]
[j3j4]

)

Pi5...i2n

j5...j2n
dxj2 . . . dxj2n , (6.1)

where P is a Lovelock-type polynomial of (n − 2) degree in the Riemann tensor R̂ij
kl and

the antisymmetrized Kronecker delta δ
[ij]
[kl]

Pi5...i2n

j5...j2n
=

n−2
∑

p=0

Dp

ℓ2p
R̂i5i6

j5j6
. . . R̂

i2(n−p)−1i2(n−p)

j2(n−p)−1j2(n−p)
δ
[i2(n−p)+1i2(n−p+1)]

[j2(n−p)+1j2(n−p+1)]
. . . δ

[i2n−1i2n]
[j2n−1j2n], (6.2)

with the coefficients of the expansion given by

Dp =

p
∑

q=0

(−1)p−q

2q + 1

(

n − 1

q

)

. (6.3)

Logically, using the identities for the antisymmetrized Kronecker deltas, one could

express P in terms of the Riemann tensor only, but prefer the above form to make easier

the connection with the explicit cases developed so far. As an example, in nine dimensions,

the charge q(ξ) is

q(ξ)=c8

∫

∂Σ

√
−hǫi1...i8(ξ

kKi1
k )δi2

j2

(

R̂i3i4
j3j4

+
1

ℓ2
δ
[i3i4]
[j3j4]

)[

R̂i5i6
j5j6

R̂i7i8
j7j8

+
3

5ℓ4
δ
[i5i6]
[j5j6]

δ
[i7i8]
[j7j8]

]

dxj2 . . . dxj8

(6.4)
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whereas in eleven dimensions

q(ξ) =
5c10

8

∫

∂Σ

√
−hǫi1...i10(ξ

kKi1
k )δi2

j2

(

R̂i3i4
j3j4

+
1

ℓ2
δ
[i3i4]
[j3j4]

)[

R̂i5i6
j5j6

R̂i7i8
j7j8

R̂i9i10
j9j10

+

+
1

3ℓ2
R̂i5i6

j5j6
R̂i7i8

j7j8
δ
[i9i10]
[j9j10]+

13

15ℓ4
R̂i5i6

j5j6
δ
[i7i8]
[j7j8]

δ
[i9i10]
[j9j10]−

31

105ℓ6
δ
[i5i6]
[j5j6]

δ
[i7i8]
[j7j8]

δ
[i9i10]
[j9j10]

]

dxj2 . . . dxj10.

(6.5)

As a consequence, q(ξ) always vanishes for a spacetime that is globally AdS. This argument

indicates that q0(ξ) in eq. (5.11) for a timelike Killing vector is indeed a covariant formula

for the vacuum energy in AAdS spacetimes.

The expression for the vacuum energy has been also recognized as the action of a

Killing vector in the Euclidean continuation of the boundary term B2n for explicit black

hole solutions. It is expected that a generic thermodynamical relation S = β(E + E0 −
∑

i ΩiJi) − IE
2n+1 = Area/4G holds for any AAdS spacetime that accepts a timelike and a

set of rotational Killing vectors. Carrying out a similar procedure as Wald’s formalism [43],

expressions for E and E0 should be mapped exactly to contributions from the bulk and the

boundary after acting with a global isometry ξ = ∂t + Ω∞
i ∂φi

on them, where the angular

velocities at infinity are given by Ω∞
i = a2

i /ℓ
2.

In odd-dimensional spacetimes, the regularized action is not invariant under the full

AdS group. Radial bulk diffeomorphisms, which generate a Weyl transformation on the

boundary, are generically broken by the conformal anomaly. In the standard counterterms

approach, this is reflected in a nonvanishing trace of the regularized stress tensor [3, 44, 45].

In the present framework, the surface term from an arbitrary variation of the ac-

tion contains also variations of the extrinsic curvature (usually canceled by the Gibbons-

Hawking term), such that a boundary stress tensor definition is not straightforward. The

answer to this point should come from direct comparison of the Kounterterms series with

Dirichlet counterterms, e.g., by expansion of the tensorial quantities in FG form. For

instance, in this way, it can be proved that in three-dimensional AdS gravity, the Koun-

terterms prescription reduces to the Dirichlet regularization up to a topological invariant

on the boundary [18]. The matching of the results in this paper with the ones obtained by

standard holographic renormalization indicates that both procedures could also be equiv-

alent in higher dimensions.

If a relation of the Noether charges to a regularized stress tensor τij is possible, we

might expect that a similar splitting as (5.9) would also appear on it. At a more speculative

level, such identification could reveal a connection between the part of τij that generates

the vacuum energy and the one that produces the Weyl anomaly, what has not yet been

understood in the standard holographic renormalization.

Could the term Bd represent the full counterterms series? We do not know yet the

answer to this question. One could only argue that is very unlikely that other boundary

terms can be added on top of the Kounterterms series, that still preserve the AAdS bound-

ary conditions extensively used here. This argument might free this procedure from the

ambiguities of the Dirichlet regularization [46].

– 28 –



J
H
E
P
0
4
(
2
0
0
7
)
0
7
3

In any case, what is particularly appealing in this formulation is the relation of Koun-

terterms to topological invariants in D = 2n [15] and to Chern-Simons-like forms (trans-

gression forms) in D = 2n+1 [47], which might provide some further insight on the problem

of regularization of Einstein-Hilbert-AdS gravity, but also in Einstein-Gauss-Bonnet [24]

and other theories with higher curvature terms (see, e.g., [17, 52]).
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A. Invariant polynomials, Chern-Simons and transgression forms

In this appendix we review the notion of transgression form as the natural extension of

a Chern-Simons density that restores gauge invariance through the introduction of an

additional gauge connection [48 – 51].

Let us consider in 2n + 2 dimensions an invariant polynomial P (F ) of the form

P (F ) =< Fn+1 > (A.1)

where F = 1
2F I

µνTI dxµdxν = dA + A ∧ A is the curvature two-form associated to the

gauge potential A = AI
µTI dxµ of the Lie group G, with a generators set {TI}. The symbol

< · · · > stands for a totally symmetric invariant trace of the generators in the adjoint

representation of G

< TI1 . . . TIn+1 >= gI1···In+1 . (A.2)

The invariant polynomial (A.1) is a closed form

dP (F ) = 0 (A.3)

and therefore, by virtue of the Poincaré lemma, locally exact

P (F ) = dC2n+1(A,F ) (A.4)

what provides the definition of a Chern-Simons density as the integration over a continuous

parameter u

C2n+1(A,F ) ≡ (n + 1)

∫ 1

0
du < AFn

u > (A.5)

with Au = uA and Fu = dAu + A2
u.

A similar relation defines a transgression form T2n+1(A, Ā), that involves two gauge

potentials A and Ā in the same homotopy class, with curvatures F and F̄ , respectively

< Fn+1 > − < F̄n+1 >= dT2n+1(A, Ā). (A.6)
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The explicit formula for the transgression form is also given by a parametric integration

T2n+1(A, Ā) ≡ (n + 1)

∫ 1

0
dt < (A − Ā)Fn

t >, (A.7)

where Ft = dAt + A2
t is the curvature associated to the interpolating gauge connection

At = tA + (1 − t)Ā. On the contrary to Chern-Simons densities, transgression forms are

truly invariant under finite gauge transformations in the group G.

The explicit formula for (A.7) is a consequence of the use of the Cartan homotopy

operator k01, which acts on generic polynomials P (Ft, At) and is defined as

k01P (Ft, At) =

∫ 1

0
dt ltP (Ft, At), (A.8)

where the action of the operator lt on arbitrary polynomials of At and Ft can be worked

out from the relations

ltAt = 0 , ltFt = A − Ā. (A.9)

The operator lt acts as an antiderivative lt(ΛpΣq) = (ltΛp)Σq + (−1)pΛp(ltΣq), where Λp

and Σq are p and q-forms, respectively.

It is particularly useful to express the curvature Ft as

Ft = F̄ + tD̄(A − Ā) + t2(A − Ā)2, (A.10)

with the curvature F̄ associated to the connection Ā (F̄ = dĀ + Ā2) and the covariant

derivative in Ā given by D̄(A − Ā) = d(A − Ā) + Ā(A − Ā) + (A − Ā)Ā.

In four dimensions, one can re-obtain the formula for the second Chern form (2.12)

from the generic transgression formula taking two gauge connections for the Lorentz group

SO(3, 1), that is, A = 1
2ωABJAB and Ā = 1

2 ω̄ABJAB and the invariant tensor for the Lorentz

generators {JABJCD} = εABCD. In this way, the interpolating connection in terms of the

Second Fundamental Form (2.6) is

At =
1

2
ωAB

t JAB =
1

2
(ω̄AB + t θAB)JAB , (A.11)

and its corresponding curvature

Ft =
1

2
R̂AB

t JAB =
1

2

[

ˆ̄RAB + t D̄ θAB + t2θA
CθCB

]

JAB , (A.12)

where ˆ̄RAB and D̄ are the curvature and the covariant derivative in the spin connection

ω̄AB . When plugged in eqs. (A.6), (A.7), the transgression form for the Lorentz group

satisfies the local relation

E4(R̂) − E4(
ˆ̄R) = 2d





1
∫

0

dt εABCD θAB
(

ˆ̄RCD + t D̄ θCD + t2θC
F θFD

)



 , (A.13)

where E4 = εABCDR̂ABR̂CD is the Euler-Gauss-Bonnet topological invariant. For a radial

foliation of the spacetime (2.10), an adequate choice of the reference spin connection corre-

sponds to the matching conditions (2.11) for the Second Fundamental Form and relates the
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components ˆ̄Rab to the intrinsic curvature at the boundary, i.e., ˆ̄Rab = Rab(h). In doing

so, the second Euler term in the l.h.s. of eq. (A.13) vanishes identically, so does the second

term in the r.h.s.

Global considerations show that the Euler term and the second Chern form B3 (2.12)

in four dimensions are equivalent up a topological number (Euler characteristic χ(M4))

∫

M4

E4(R̂) = 32π2χ(M4) +

∫

∂M4

B3, (A.14)

revealing the profound connection of the Kounterterms method with topological invariants.

In a similar fashion, the higher even-dimensional Kounterterms B2n−1 (2.15) are related

to the corresponding Euler term in D = 2n dimensions by virtue of the Euler theorem

∫

M2n

E2n(R̂) = (−4π)n n!χ(M2n) +

∫

∂M2n

B2n−1. (A.15)

For any invariant polynomial P (Ft, At), it can be verified that

(

ltd + dlt
)

P (Ft, At) =
∂

∂t
P (Ft, At) (A.16)

which, when integrated between 0 and 1, recovers the Cartan homotopy formula

(

k01d + dk01

)

P (Ft, At) = P (F,A) − P (F̄ , Ā) . (A.17)

In particular, for P = C2n+1, the above relation allows us to express a transgression form

as the difference of two Chern-Simons densities plus a boundary term

T2n+1 = C2n+1(A,F ) − C2n+1(Ā, F̄ ) + dΞ2n(A,F ; Ā, F̄ ). (A.18)

The 2n−form Ξ2n is defined by the action of the Cartan homotopy operator on a Chern-

Simons term

Ξ2n(A,F ; Ā, F̄ ) ≡ k01C2n+1 (A.19)

whose explicit form is given by

Ξ2n = n(n + 1)

∫ 1

0
ds

∫ 1

0
dt s < At(A − Ā) Fn−1

st > (A.20)

where Fst = sFt + s(s − 1)A2
t .

When the gauge group is AdS, the connection field is written as

A =
1

2
ωABJAB + eAPA, (A.21)

where JAB and PA are the generators of rotations and AdS translations, respectively.

For the trace of the generators of SO(2n, 2), we take < JA1A2, . . . , JA2n−1A2n , PA2n+1 >=
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2n

(n+1)εA1···A2n+1 , such that each Chern-Simons form in (A.18) can be written as a bulk

Lovelock Lagrangian (a polynomial in the curvature and the vielbein)

C2n+1(A,F ) = LCS−AdS(R̂, e) (A.22)

=

∫ 1

0
dt εA1···A2n+1(R̂

A1A2+
t2

ℓ2
eA1eA2) · · · (R̂A2n−1A2n +

t2

ℓ2
eA2n−1eA2n)eA2n+1

plus a surface term whose explicit form is involved and has to be worked out case by case.

However, the matching conditions for the Second Fundamental Form (2.11) –that single out

the boundary correction in the Euler theorem– and the condition ēA = 0 (in order to avoid

a background-dependent bimetric formulation) replaced in the transgression form (A.18)

result into a gravity action

ICS−AdS =

∫

M2n+1

T2n+1 =

∫

M2n+1

LCS−AdS(R̂, e) +

∫

∂M2n+1

B2n(θ, e) (A.23)

with a boundary term B2n(θ, e) given by the formula (2.15). The above total action is

regularized both in its Euclidean continuation and in the Noether charges. It is quite

remarkable that the contributions from the bulk terms in (A.18) combine to the surface

term (A.20) to produce a compact expression for the boundary terms in this particular

Lovelock theory as the double integral in eq. (2.15). But it is even more surprising that the

same 2n−form is useful to regularize other gravity theories, including Einstein-Hilbert-AdS,

what is shown explicitly in this paper.

B. Useful identities

Let us consider the five-dimensional Kounterterms as an example of the equivalence between

differential forms and tensorial notation

B4 = ǫA1...A5θ
A1A2eA3

(

RA4A5 +
1

2
θA4

CθCA5 +
1

6ℓ2
eA4eA5

)

,

= 2ε1a1a2a3a4θ
1a1ea2

(

Ra3a4 +
1

2
θa3

1θ
1a4 +

1

6ℓ2
ea3ea4

)

,

= −2εa1a2a3a4K
bec

(

Ra3a4 − 1

2
Ka3Ka4 +

1

6ℓ2
ea3ea4

)

,

= −εa1a2a3a4e
a1
j1

ea2
j2

ea3
j3

ea4
j4

Kj1
i1

δj2
i2

(

Rj3j4
i3i4

− 1

2
K

[j3j4]
[i3i4]

+
1

6ℓ2
δ
[j3j4]
[i3i4]

)

dxi1 ∧ . . . ∧ dxi4 ,

=
√
−hδ

[i1i2i3]
[j1j2j3]K

j1
i1

(

Rj2j3
i2i3

− Kj2
i2

Kj3
i3

+
1

3ℓ2
δj2
i2

δj3
i3

)

d4x, (B.1)

where we have used the identities

εa1...a2nea1
j1

. . . ea2n

j2n
= −

√
−hεj1...j2n , (B.2)

with the definition
√
−h = det(e), the volume element

dxi1 ∧ . . . ∧ dxi2n = εi1...i2nd2nx, (B.3)
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and the general property for antisymmetrized Kronecker deltas

δ
[i1...ip]
[j1...jp]δ

j1
i1

δj2
i2

. . . δjm

im
=

(r − p + m)!

(r − p)!
δ
[im+1...ip]
[jm+1...jp] (B.4)

where p > m and r as the range of the indices.

C. Noether’s theorem

We now recall the standard construction of the conserved quantities associated to asymp-

totic symmetries of the action through the Noether’s theorem.

Let us consider an action that is the integral of a D−form Lagrangian density in D

dimensions

L =
1

D!
Lµ1...µD

dxµ1 ∧ . . . ∧ dxµD . (C.1)

An arbitrary variation δ̄ acting on the fields can be always decomposed in a functional

variation δ plus the variation due to an infinitesimal change in the coordinates x′µ = xµ+ηµ.

For a p-form field ϕ, the latter variation is given by the Lie derivative Lηϕ along the vector

ηµ, that can be written as Lηϕ = (dIη + Iηd)ϕ, where d is the exterior derivative and Iη is

the contraction operator.4 The functional variation δ acting on L produces the equations

of motion plus a surface term Θ(ϕ, δϕ). The Lie derivative contributes only with another

surface term because dL = 0 in D dimensions.

The Noether’s theorem provides a conserved current associated to the invariance under

diffeomorphisms of the Lagrangian L, that is given by [23, 53]

∗J = −Θ(ϕ, δϕ) − iηL. (C.2)

In case that the diffeomorphism ξ is a Killing vector, we have δϕ = −Lξϕ, with Lξ the

Lie derivative along the vector ξµ. Because the surface term Θ is linear in the variations

of the fields, the current takes the form

∗J = Θ(ϕ,Lξϕ) − iξL. (C.3)

(see also [54] and, for a recent discussion, [55, 56]).

As the current is conserved (d∗J = 0), ∗J can always be written locally as an exterior

derivative of a quantity. In general, the boundary ∂M consists of two spacelike surfaces (at

initial time Σt1 and at final time Σt2) and a timelike surface Σ∞ (at spatial infinity). Only

when the current can be written globally as an exact form ∗J = dQ(ξ), we can integrate

the charge Q(ξ) in a (D − 2)−dimensional surface ∂Σ (a constant-time slice in Σ∞, as we

assume flux conservation through Σt1 and Σt2).

Let us consider now a Lagrangian L that differs from L in a boundary term dβ

L = L + dB, (C.4)

4The action of the contraction operator Iη over a p-form αp = 1
p!

αµ1
. . .µp dxµ1 ∧ . . . ∧ dxµp is given by

Iηαp = 1
(p−1)!

ηνανµ1
. . .µp−1

dxµ1 ∧ . . . ∧ dxµp−1
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so that the conserved current is modified as

∗J = Θ(ϕ,Lξϕ) − iξL +
δB

δϕ
Lξϕ − iξdB (C.5)

= d (Q(ξ) + iξB) . (C.6)

The above formula provides a useful shortcut to find the conserved charges of a La-

grangian supplemented by a boundary term as

Q(ξ) = Q(ξ) + iξB. (C.7)

D. Variation of B2n

The variation of the Kounterterms series B2n has an expanded form given by

δB2n = −2n

1
∫

0

dtε

n−1
∑

k=0

Cn−1
k

n−1−k
∑

l=0

Cn−1−k
l Rn−1−k−l

t
∫

0

dst2k+1(−1)kδK2k+1s2le2l+1

−2n

1
∫

0

dtε

n−1
∑

k=0

Cn−1
k

n−1−k
∑

l=0

Cn−1−k
l Rn−1−k−l

t
∫

0

dst2l+1(−1)lK2l+1s2kδe2k+1 ,(D.1)

where variations of the intrinsic curvature produce surface terms that are identically van-

ishing on the boundary. After some algebraic manipulations, we have

δB2n = −2n

1
∫

0

dtεδKe

n−1
∑

k=0

Cn−1
k

(

R + t2ee
)n−1−k

(−KK)k
(

1 − t2k+1
)

−2n

1
∫

0

dtεKδe

n−1
∑

k=0

Cn−1
k

(

R + t2e2
)n−1−k

t2k+1(−KK)k, (D.2)

or, in a more convenient form

δB2n = −2n

1
∫

0

dtεδKe
(

R − KK + t2ee
)n−1

+2n

1
∫

0

dtε(δKe − Kδe)
(

R − t2KK + t2e2
)n−1

, (D.3)

that is particularly useful to impose the asymptotic conditions for AAdS spacetimes.
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